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STEKLOV INEQUALITY AND ITS APPLICATION
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Abstract. In this paper, one lower estimate for the first eigenvalue of the Laplace operator is

obtained. To this end, a Steklov-type inequality for bounded and unbounded domains with a

finite measure in proved based on the Sobolev inequality.
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1. Introduction

The issue of calculation of the lower estimate for the first eigenvalue of the Laplace operator

is important. This problem was studied by different authors. Finding the best estimate for the

first eigenvalue of the Laplace operator is studied in scientific literature. The proof of a Steklov-

type inequality for bounded and unbounded domains with a finite measure is also important

since the Steklov inequality is widely used in various sections of mathematical physics. Finding

a lower estimate for the first eigenvalue of the Laplace operator is relevant, since this question

arises in applied problems. In this note, an attempt is made to find a lower estimate for the first

eigenvalue of the Laplace operator. For this purpose, Steklov-type inequality in bounded and

unbounded domains with a finite measure is proved on the basis of the Sobolev inequality by

passing to the limit. The study of the relationship between the Steklov and Sobolev inequalities

is relevant and of scientific interest. In this paper, the Steklov inequality is applied to calculation

of the lower estimate for the first eigenvalue of the Laplace operator.

2. Denotation and formulation of basic results

Let Ω ⊂ Rn be the a bounded or unbounded domain with a finite measure |Ω|. For convenience

of the further statement we accept the following notations ∥u∥p =

{∫
Ω

|u (x)|p dx
}1/p

, p ≥ 1 is

a norm in Lp (Ω); the index p in ∥.∥p will be omitted for p = 2, i.e. we will write ∥·∥.
Let |Ω| is be a bounded domain with a rather smooth boundary. For the Laplace operator

∆, we consider the following spectral problem:

∆u+ λu = 0, in Ω, λ > 0,

u = 0 on ∂Ω.
(1)
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As it is known (see for instance [1, p. 434]), problem (1) has a nontrivial solution both in

classical and in the generalized sense only for discrete set of positive values {λk} of the parameter

λ such that of λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λk.....λk → ∞ as k → ∞.

The following theorems are valid.

Theorem 2.1. Let λ1 be the first eigenvalue of problem (1). Then the following lower bound is

valid for it:

λ1 ≥
γ1

|Ω|2/n
, (2)

where γ1 =
πen
2 .

Theorem 2.2. Let λ in problem (1) satisfy the condition

λ <
γ1

|Ω|2/n
, (3)

where λ1 was determined in (2). Then spectral problem (1) has no trivial solutions, i.e. eigen-

functions in the class
0

W 1
2 (Ω).

Theorem 2.1 follows from the following conjectures.

Conjecture 2.1. Let Ω be a bounded or unbounded domain with a finite measure |Ω|. Then,

for any function from the class
0

W 1
2 (Ω) the following inequality is valid:

∥u∥ ≤ w1 ∥∇u∥ , (4)

where w1 =
√

2
πne |Ω|

2
n .

Conjecture 2.2. Let λ1 be the first eigenvalue of problem (1). Then, for ∀u(x) ∈
0

W 1
2 the

following exact inequality is valid:

∥u∥ ≤ w2 ∥∇u∥ , (5)

where w2 =
1√
λ1
. These inequality was first proved by Steklov in 1896 [2], see also [3. p.33].

Now theorem 2.1 follows from conjecture 2.1 by virtue of conjecture 2.2.

In [4], the following estimate is proved for the first eigenvalue of problem (1) for n = 2:

λ1 ≥
π

|Ω|
. (6)

In the paper [5], for special domains (“plane-covering domain”) the estimate

λ1 ≥
2π

Ω
(7)

is proved.

Comparison of estimates (2), (6) and (7) shows that our estimate is the best one.
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3. Sobolev inequality

We give the proof of Conjecture 2.1.

Introduce the following denotation. For the given ρ from the interval (0, ρ0), where ρ0 = ∞
for n = 1, 2; ρ0 = 4/(n− 2) for n ≥ 3 we define α = ρn/ [2 (ρ+ 2)]. For the given α ∈ (0, 1), we

define χ =
√

αα (1− α)1−α. Let B = B (n/2, n (1− α) /2α) be the Euler beta function, Γ (n/2)

be the Euler gamma-function. We put

k (α) =
(σnB/2)α/n

χ
, (8)

where σn = 2πn/2Γ (n/2).

For the given p0 ∈ (1, 2), we define

kB (p0) =

[
(p0/2π)

1/p0(
p10/2π

)1/p10
]n/2

, (9)

where 1
p0

+ 1
p10

= 1.

We introduce two denotations:

k0 (α) = k (α) kB

(
ρ+ 2

ρ+ 1

)
= k (α) kB

(
2n

n+ 2α

)
. (10)

kC (Ω, α) = k0
1/α

(α) |Ω|
1−α
n . |Ω| = mesΩ. (11)

Conjecture 3.1. Let Ω be a bounded or unbounded domain with a finite measure |Ω| , ρ be a

number determined above, u (x) be any function from the class
0

W 1
2 (Ω). Then, the following

Sobolev inequality is valid:

∥u∥ρ+2 ≤ kC (Ω, α) ∥∇u∥ , (12)

where kC was determined by formula (11), k0 (α) , kB, k (α) by formulas (10), (9), (8) respec-

tively.

Proof. Conjecture 3.1 is proved based on the results obtained [6] (see also [7]). �

The following lemma is valid:

Lemma 3.1. Let ρ and α be the numbers determined above, k0 (α) be determined by formula

(10) kB from (9), k (α) from (8). Then, let u (x) be any function from the class W 1
2 (Rn). Then

the imbedding W 1
2 (Rn) ⊂ Lρ+2 (R

n) and interpolation Sobolev inequality

∥u∥ρ+2 ≤ k0 ∥∇u∥α ∥u∥1−α (13)

is valid, here ∥.∥ρ+2 is a norm in Lρ+2 (R
n) ∥·∥ is a norm in L2 (R

n) .

Apply inequality (13) to the function u (x) ∈
0

W 1
2 (Ω) and estimate the norm ∥u∥ by ∥u∥ρ+2,

applying the Holder inequality:

∫
Ω

|u (x)|2 dx ≤

∫
Ω

|u (x)|ρ+2 dx

 2
ρ+2
∫

Ω

dx


or

∥u∥ ≤ ∥u∥ρ+2 |Ω|
ρ

2(ρ+2) . (14)
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From

(∫
Ω

|u (x)|ρ+2 dx

) 1
ρ+2

≤ k0 (α)

(∫
Ω

|∇u (x)|2 dx
)α

2
(∫
Ω

|u(x)|2 dx
) 1−α

2

, by virtue of (14) we

get (12):

∥u∥ρ+2 ≤
[
k0 (α)

] 1
α |Ω|

1−α
n ∥∇u∥ = kC (Ω, α) ∥∇u∥ .

4. Limit passage

In (12), we pass to the limit as ρ → 0 + (α → 0+), where k0 = k (α) kB

(
2n

n+2α

)
. Represent

kB

(
2n

n+2α

) 1
α
in the following form:

[
kB

(
2n

n+ 2α

)] 1
α

=
1

π

√(
1 + 2α

n

) n
2α

√(
1 + 2α

n

) (
1− 2α

n

)−n
2α

√
1− 2α

n

. (15)

Passing to the limit in (15) as α → 0+, we get:

lim
α→0+

[
kB

(
2n

n+ 2α

)] 1
α

=
1

πe
. (16)

Using the relation B
(
n
2 ,

n(1−α)
2α

)
=

Γ(n
2 )Γ

(
n(1−α)

2α

)
Γ( n

2α)
, we represent [k (α)]

1
α in the following form:

[k (α)]
1
α =

√
π
√
1− α

√
(1− α)−

1
α

Γ
(
n(1−α)

2α

)
Γ
(

n
2α

)


1
n

1√
α
. (17)

Calculate lim
α→0+

[k (α)]
1
α obviously, lim

α→0+

√
1− α

√
(1− α)−

1
α =

√
e.

Calculate

lim
α→0+

Γ
(
n(1−α)

2α

)
Γ
(

n
2α

)


1
n

1√
α
. (18)

To this end, we use the following relation for the gamma-function Γ (θ) [8]:

ln Γ (θ) = θ ln θ − θ − 1

2
ln θ +

1

2
ln 2π +R0 (θ) , (19)

where R0 (α) =
1
2

∞∑
m=1

m
(m+1)(m+2)

∞∑
j=1

1
(θ+j)m+1 . For h (α) =

[
Γ
(

n(1−α)
2α

)
Γ( n

2α)

] 1
n

1√
α
we have

lnh (α) =
1

n
ln

[
Γ
(n (1− α))

2α

]
− 1

n
ln
[
Γ
( n

2α

)]
− 1

2
lnα. (20)

By formula (19) for ln
[
Γ
(
n(1−α)

2α

)]
and ln

[
Γ
(

n
2α

)]
the following relations are valid:

ln
[
Γ
(
n(1−α)

2α

)]
= n−nα

2α ln
(
n−nα
2α

)
−

−n−nα
2α − 1

2 ln
n−αn
2α + 1

22π +R1 (α) ,

(21)
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where

R1 (α) =
1
2

∞∑
m=1

m
(m+1)(m+2)

∞∑
j=1

(2α)m+1

(n+nα+2αj)m+1 .

ln Γ
(

n
2α

)
= n

2α ln n
2α − n

2α − 1
2 ln

n
2α + 1

2 ln 2π +R2 (α) ,

(22)

where R2 (α) =
1
2

∞∑
m=1

m
(m+1)(m+2)

∞∑
j=1

(2α)m+1

(n+2αj)m+1 .

Taking into account relations (21), (22) in (20), form lnh (α) we have:

lnh (α) = −1

2
ln

2

n
+

1− α ln (1− α)

α
− 1

2n
ln (1− α) +

1

2
+

1

n
R1 (α)−

1

n
R2 (α) .

Hence as α → 0+ we get lim
α→0+

lnh (α) = 1
2 ln

2
n or

lim
α→0+

h (α) =

√
2

n
. (23)

From (17), (18), (23) it follows that

lim
α→0+

[k0 (α)]
1/α =

√
2πe

n
. (24)

Finally, from (16), (24) we have:

lim
α→0+

[k0 (α)]
1/α =

√
2

nπe

So, in inequality (12), passing to the limit as α → 0+, we get formula (4).

5. Proof of theorem 2.2

Wemultiply the equation ∆u+λu = 0 by u (x) and integrate the obtained relation with respect

to Ω with regard to the boundary condition u/∂Ω = 0 and as a result we get − ||∇u||2+λ ∥u∥2 =
0. Hence, by virtue of the inequality

∥u∥ ≤
√

2

nπe
|Ω|

1
n ∥∇u∥

, we get the following inequality : (
nπe

2 |Ω|
2
n

− λ

)
∥u∥2 ≤ 0. (25)

From (25), provided λ < πne

2|Ω|
2
n

it follows that ∥u∥ = 0, i.e. u(x) ≡ 0 Q.E.D. Theorem 2.2 is

proved.

6. Conclusions

In this paper, an attempt is made to estimate from below the first eigenvalue of the Laplace

operator that arises in applied mathematics, and the resulting estimate may be useful for applied

scientists.
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